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Abstract

This paper proposes a content-based image retrieval
system which can learn visual concepts and refine them
incrementally with increased retrieval experiences cap-
tured over time. The approach consists of using fuzzy
clustering for learning concepts in conjunction with sta-
tistical learning for computing “relevance” weights of
features used to represent images in the database. As
the clusters become relatively stable and correspond to
human concept distribution, the system can yield fast
retrievals with higher precision. The paper presents
discussion on problems such as system mistakenly in-
dentifying a concept, large number of trials to achieve
clustering, etc. The experiments on synthetic data and
real image database demonstrate the efficacy of this
approach.

1. Introduction

Past several years have witnessed the developments
of a variety of content-based retrieval methods and sys-
tems for image databases. Two topics of interest have
been learning concepts from low-level features and rel-
evance feedback from the user.

Tieu and Viola [11] use a boosting technique to learn
a classification function when a user selects a few ex-
ample images at query time. The classifier relies on 20
of the large number of visual features. Cox et al. (4]
use a Bayesian approach for optimal solutions for mul-
tiple visual features. The Multiple Instance Learning
problem is formalized in [10] and the Diverse Density
algorithm is adopted to learn visual concept. However,
this strategy necessitates image segmentation or region
selection, which may be brittle and requires extra im-
age processing work. All the above mentioned systems
attempt to learn human concepts only with a single
user.

Lipson et al. [6] use qualitative spatial and photo-
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metric relationships to encode class models for classify-
ing scenes by adopting a configural recognition scheme.
Lim [5] proposes the notion of visual keywords (en-
tities) which can be adapted to visual content domain
via learning from examples generated by human during
off-line. In both of these two approaches, no relevance
feedback is used.

The idea of concepts learning with fuzzy clustering
and relevance feedback by exploiting meta knowledge
is proposed in [3]. In that paper, the concept is di-
rectly given to the system and the user does not seek
a concept. As compared to 3], in this paper, the user
is given an opportunity to develop his/her own con-
cept and the system identifies the concepts sought by
various users.

In relevance feedback, the system attempts to cap-
ture the user’s concept by dynamically adapting and
updating the relevance of the images to be retrieved.
The feedback provided by users in the forms of “sim-
ilar” (positive) images and “dissimilar” (negative) im-
ages is an important part of the experience. In these
systems, generally once the user is done with a query
and starts a new query, the experience (meta knowl-
edge) gained by the systems with previous queries
is lost. Meta knowledge is the experience of each
query image with various users. This experience con-
sists of the classification of each image into various
classes (clusters), relevances (weights) of features and
the number of times this image is selected as a query
and marked as positive or negative.

This paper attempts to capture and utilize the pre-
vious experiences of the system with various queries to
learn visual concepts. The visual concepts are continu-
ally learned and refined over time, not necessarily from
the interaction with one single user in a single retrieval
session. Fuzzy clustering and relevance feedback are
the main tools used for this purpose.

The key contribution of the paper is the presentation
of an approach that integrates fuzzy clustering with
feature relevance learning and exploits meta knowledge
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Figure 1. System diagram for concept learn-
ing using meta knowledge.

to partition the database into clusters, which can be
used for efficient indexing.

2. Technical Approach

Figure 1 illustrates our approach for concept learn-
ing by exploiting meta knowledge. Since it is not un-
common that one image can be ascribed into different

concepts, we use semi-supervised fuzzy c-means clus-
" tering method to learn the concept distribution, and
the images’ ascriptions to different concepts are rep-
resented by the resulting partition matrix. Initially,
when the system is presented with a query image, it
does not know which concept the user is seeking. It
just presents the images to the user using the K-NN
search on the entire database. If the user is not sat-
isfied with these retrievals and provides feedback, the
system attempts to decide the concept that is sought
by the user.

The concept distribution knowledge is derived from
semi-supervised fuzzy clustering performed over time.
If the desired concept is achieved, the system only
needs to search images within the cluster corresponding
to this concept; otherwise, it performs statistical rele-
vance learning to estimate feature weights and search
images in the entire database. With increased retrieval
experiences, the concept learning is improved, which
helps to capture user’s desired concept more precisely,
and thus, future retrieval performance is improved.

2.1. Related Work on SS-FCM

The traditional fuzzy c-means (FCM) clustering
method [2] is often frustrated by the fact that the
lower values of objective function do not necessarily
lead to better partitions. This actually reflects the gap
between numeric-oriented feature data and concepts
understood by humans. The semi-supervised fuzzy c-
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means (SS-FCM) clustering method [1][7][8] attempts
to overcome this limitation when the labels of some of
the data are already known.

Pedrycz (8] proposed a semi-supervised fuzzy clus-
tering method with the objective function

¢c N c N
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where the notations are specified in the following:
¢: the number of clusters,
N: the number of patterns,
U = [uig)ex vt partition matrix as clustering results,
d (i =1,2,---,cand k = 1,2,---N): the Maha-
lanobis distance defined as
dix® = |lox, — vl T Wo|z — il (2

where Wy is a symmetrical positive definite matrix in
R™ x R"™,
zx (k=1,2,---,N): the pattern in R",
v; (1 =1,2,---,¢): the prototype of Cluster 1.

The first term on the right of (1) is the objective
function in traditional fuzzy clustering. In the second
term, by is defined as

1 if z is labeled;
0 otherwise.

by, 3)

The matrix F = [fir]cxn contains the given label vec-
tors in appropriate columns and zero vectors elsewhere.
a (a > 0) denotes a scaling factor whose role is to
maintain a balance between the supervised and unsu-
pervised components within the optimization process.
Usually, @« = N/M, where M is the number of labeled
patterns.

The estimations of cluster prototypes and the fuzzy
covariance matrices are

ey U5
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respectively, where s = 1,2,---,¢, ps = 1 (implying all
clusters have the similar sizes), and

N
P = > ope1 Wi (T — ve)(ze — vs)T
k=1 “sk
The task is to minimize J with respect to the par-

tition matrix U and the prototypes of clusters, with U
satisfying two conditions:

(6)



(i) i uix=1, k=1,2,---N,
(i) ug >0,i=1,2,---,¢,k=1,2,---N.

The Lagrange multiplier technique yields an expression
for partition matrix
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where s =1,2,---,cand t =1,2,---, N.
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2.2. Concept Learning

Let the number of concepts (clusters) and the num-
ber of images be ¢ and NNV, respectively. After a
user’s retrieval experience, let there be Nt positive
labeled images and N~ negative labeled images, and
they are represented by I = {If,If,--- T¥,} and
I~ = {I;,I7, -, I5_} respectively.

The task is to first determine which concept the
user was seeking so that we can derive correct knowl-
edge from this retrieval and then improve our concept
learning by semi-supervised fuzzy clustering later. The
index k of the cluster corresponding to the concept
sought is computed as

P(k) (3)

k = arg - max
k=1,2,c

where P(k) is equal to
Prob(If € Cr,---, T, € Ca, Iy & Chy---, Ip- & Ci)
=TI, Prob(I} € Co) TIX, Prob(I; & Ci)

Nt N-
=iz U, Hj:l(l - Uk,IJr)

with ug; (b = 1,2,---,c and j 1,2,-+-,N) be-
ing the element of partition matrix U.xny and Cy
(k = 1,2,---,¢) being concept k. This probability
maximization method uses the current partition ma-
trix information to decide the sought concept, which
necessitates the assumption that current partitioning
is not too bad.

Now the images in I are in cluster k and those in
I™ are not in cluster k. We designate a positive matriz
P.xn and a negative matriz ().« to represent this
kind of knowledge. At the very beginning, when no
retrieval has ever been executed on the system, P and
() are initialized to be zero matrices. After a retrieval

experience, the elements { Pt s Py I++} in P and
) I3

the elements { Qe ams " G- } in @ are increased by
) B vl
1. So the values of px; and qi; represent to what extent
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1. Given the number of clusters c, the number of im-
ages N, positive matrix Pexn and negative matrix
Qcxn. Compute matrix F.xn and o from P and
Q.

2. Compute cluster centers and the fuzzy covariance
matrices by (4) and (5).

3. Update partition matrix: If not predefined as 0,
the elements are computed by (12).

4. If |JlU - U’|} < 6 (with & being a tolerance limit),
stop; else, go to 2 with U = U".

Figure 2. Semi-supervised fuzzy clustering
for concept learning

people agree and disagree to ascribe an image j into
cluster k, respectively. ,

The motivation for having matrices P and Q is to
capture and update previous users’ retrieval experi-
ences. In the following, P and @ are processed in the
sense of statistics by estimating users’ voting whether
a certain image contains a specific concept or not.

Define £ = P ~ (), and let

-]

0 the jth column in E is a zero vector;
1 otherwise.

(9)
for j = 1,2,---,c. Let M be the number of non-zero
columns in E, we define

a=N/M (10)

We then let F be the matrix that has normalized
columns of E, i.e., for the elements of F,

€kj — MiNj=1.2,... c €ij

maX;=1,2,...,c €ij — mini=1,2,...,c €5

frj

(11)

fork=1,2,---,¢,j=1,2,---,N and kth column in
E is a non-zero vector.

If the element ex; of E is negative, k = 1,2,---,¢,
j=12,--- N, it implies that there are fewer people
ascribing image j to cluster k£ than those opposing to
this association, we conclude that image j does not
contain concept k and directly predefine the element
uy; of partition matrix to zero. If for the jth column of
E;xn, there are I; negative elements whose row indices
are J(j) = {ri,j,r2,j,"*,71;,;}, we set ex; = 0, j =
172,"'7N) k€ J(])

We can now deal with the semi-supervised fuzzy
clustering, which is also an optimization problem with
the objective function (1). Besides the two constraints
(i) and (ii) appearing in 2.1, a new constraint is added
as we have discussed above:



(iil) ug; =0, j=1,2,---,N, k € J(j).

The estimations of cluster prototypes and the fuzzy
covariance matrices are also (2) and (3) respectively.
And we derive the expression for partition matrix ele-
ments as

U [ 1+a(l =430 gy fit)
d2
1 ta Z;:ng.](t) E%L

it

Uge = + afstbe

(12)
where s = 1,2,---,cand t = 1,2,---, N. Our semi-
supervised fuzzy clustering algorithm for concept learn-
ing is outlined in Figure 2.

2.3. Improving Retrieval Performance

With the partition matrix U.« n, we define defuzzied
partition matrix Z.«, whose elements are

o 1 ifuy > ,B(maszl,gl...,cujk);
ik = { 0 otherwise. (13)
where 1 = 1,2,---,cand k¥ = 1,2,---,N. The value

of B € (0, 1] represents to what extent we can say that
the elements u;; is large enough so that image & can
be ascribed to cluster 1.

With user’s feedback after iteration 0, if LT images
{Iff, I, I}, } are labeled positive and L~ im-
ages {I;,I;,---,I;_} are labeled negative by user,
we check if these positive images can be ascribed into
one common cluster while negative images are not in
this cluster. If 3s € {1,2,--,c}, the following two
conditions are satisfied:

(@) Vi€ {I5, I, I ugg = 1,

dyYie{I; 1y, I;_}, usu =0,

then the current user seems to be seeking the con-
cept corresponding to cluster s. So the system saves
tremendous amount of computation for feature rele-
vance learning and searching K images over the entire
database; instead, only searching K images within clus-
ter s is needed, i.e., searching among the images whose
sth element of the corresponding U column vectors are
1. When above conditions are not satisfied, we use sta-
tistical feature relevance approach presented in [9] to
perform the retrievals and update clustering.

3. Experiments

For the experiments on both synthetic data and
real image database, we simulate the process of a re-
trieval system for which queries are selected randomly
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Figure 3. Fuzzy clustering results.

(a)

groundtruth labels, (b) 0 experience (47 er-
rors), (c) 10 retrievals (30 errors) and (d) 30

retrievals (5 errors).
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Figure 4. Synthetic data: improved cluster-
ing with increased number of retrieval expe-
riences.

among the patterns in the database. For each retrieval,
the user’s interaction is monitored by a groundtruth
matrix Gcxn, whose element g;; (¢ = 1,2,---,¢ and
j=1,2,---,N) is defined as

if the jth pattern has concept i;

1
9 = { 0 otherwise. (14)

An important measure for the fuzzy clustering result
is the percentage of correct clustering, which is defined
as

2_i2_; Gij * XOT - Zij
cN

where z;; is the element of defuzzied partition matrix
Z.

percentage = (15)

3.1. Synthetic Data

To help the reader to understand the theory of
semi-supervised fuzzy clustering, we present an experi-
ment on synthetic data. Figure 3 shows three synthet-
ically created overlapping clusters (two-dimensional,
Gaussian distribution). Each cluster contains 50 pat-
terns. Cluster 1 and Cluster 2 are ellipsis with the

same mean of ( 8 ) and they have covariance matri-

s [ 30625 —16238 o ( 30625 1628
~1.6238 1.1875 ) 29\ 1.6238 1.1875

respectively. Cluster 3 is a circle with the mean of

-1 0 .
( 0 ) Figure 3

0 1
(a) shows the cluster distribution.
We implement our clustering algorithm on this syn-
thetic data with ¢ =3, N =150, K =8, and 8 = 1.
Simulating the system with increased experiences, we

and covariance matrix (

85

plant water cloud

(a)

building

plant water sky water

cloud sunset

(b)

cloud building

sunset people cloud sunset
cloud water water cloud
water sunset building water

(©

Figure 5. Sample real data with multiple con-
cepts: sample images containing (a) 1 con-
cept, (b) 2 concepts, (c) 3 concepts.

randomly select a pattern as the query for each re-
trieval, and decide the concept (cluster) that is sought
by positive and negative images. We then update the
fuzzy clustering and derive the defuzzied partition ma-
trix. An example of this process is shown in Figure 3
(b-d), in which the clustering result is improved with
increased experiences.

Figure 4 shows the average percentage of correct
clustering with increased experiences. Notice that only
89.7% of correct clustering is achieved after 100 expe-
riences. This is because the partition matrix derived
from the initial fuzzy c-means clustering without any
experience is far away from groundtruth matrix. After
a user’s experience, the system may mistakenly decide
the concept sought. This incorrect knowledge will mis-
lead the fuzzy clustering which may cause the updated
partition matrix to be farther away from groundtruth

‘matrix. After a retrieval experience, if the correctly

sought concept is directly given instead of deriving it
by computation, this is called a training experience.
Figure 4 also gives the performance curve with train-
ing experiences, which help clustering result to finally
reach 100%. The role of training stage will be discussed
further in the real data experiment.



3.2. Real Data

Many image databases for retrieval research are de-
rived from Corel Photo Collection. However, since each
image in this collection has only one groundtruth label,
it is not suitable for our problem where an image may
belong to multiple clusters. We constructed an image
database which contains 1047 images, some samples are
shown in Figure 5. For each image, we ascribe it to a
concept only if this concept occupies a significant area
in the image. There are 9 concepts (of sizes): plant
(115), sky (128), animal (100), sunset (199), building
(249), texture (152), people (185), cloud (204) and wa-
ter (146). On the average, each image contains 1.41
concepts. We use texture and color features to repre-
sent images. The texture features are derived from 16
Gabor filters [9]. We extract means and standard de-
viations from the three channels in HSV color space.
Thus, each image is represented by 22 features.

We implement our fuzzy clustering method on this
database, with ¢ =9, N = 1047, K = 16, and 8 = 0.5.
For the reasons of the big gap between low-level fea-
tures and a human concept, the initial fuzzy clustering
is far away from groundtruth labeling. We can set a
training stage at the beginning of the system’s running
online. Let there be t training experiences, in each
of which on the average L images are labeled positive
or negative, the amount of concept knowledge derived
from training is estimated to be Et%, which denotes
the percentage of elements whose values are given in
advance out of all the elements in the groundtruth ma-
trix.
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Figure 6. Real data: improved clustering with
different amounts of training.

Figure 6 shows the fuzzy clustering performance
of the system going through 500 retrieval experiences
starting with different amounts of training experiences.
With increased number of initial training experiences,
fuzzy clustering is improved. Compared with the case
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Figure 7. Real data: ROC curves for database
classification with different amounts of re-
trieval experiences.

that has no training, 20 training experiences improve
the clustering significantly. In our experiment, L = 26,
so the amount of concept knowledge derived from the
20 training experiences is 5.5% . We also observe from
Figure 6 that even with training experiences, the per-
centage of correct clustering still cannot converge to
100%, which again reflects the gap between image fea-
tures and human visual concepts.

precision
o
~

0.6 o exp.=500
x  exp.=300
0 SJ o exp.=200
: o exp.=0
0.4o 3 4

2 .
iteration

Figure 8. Real data: retrieval performance
with various amounts of experiences.

For Concept k, k = 1,2,---,¢, in the correspond-
ing kth rows in groundtruth matrix G and defuzzied
partition matrix Z, for j = 1,2,---,N, let
N1 = number of j that give gi; =1,
¢ = number of j that give gr; = 1 and 2;; =0,

NO number of j that give gr; =0,
v = number of j that give gx; =0 and z; = 1.

We define the Probability of detection and Prob-
ability of false alarms as Pd = (N1 — p)}/N1 and
Pf =v/NO. Calculating the average Pd and P f over
the c concepts, we obtain the ROC curves for detection



Figure 9. Different retrieval results with the same query (the first image) containing the concepts of
cloud and water. The retrievals are shown after 500 experiences. Initially K-NN search yields the
images in (a). When the user seeks cloud, 7 images having cloud are labeled positive (row 1: image
1, 6, 7; row 2: image 1, 3, 4, 5). After searching the cloud cluster, the retrieved images are shown
in (b) with 12 correct images (except row 2: image 4, 5, 6, 8). When the user seeks water, 7 images
in (a) are labeled positive (row 1: image 1, 4, 5, 7 and row 2: image 1, 2, 8). After searching the
corresponding cluster, the retrieved images are shown in (c) with 15 correct images (except row2:
image 7).
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performance of partition matrix with different amounts
of experiences shown in Figure 7. With the value of
defuzzy parameter 3 decreased, Pd and Pf both be-
comes larger. Observe that with more retrieval experi-
ences, in the case when 3 is not very large, the detec-
tion ability of partition matrix is improved.

Figure 8 presents the retrieval performances with
different amounts of experiences starting with 20 train-
ing experiences. The retrieval precision is defined as

number of positive retrievals

precision = (16)

number of total retrievals

We select an image in this database as the query, imple-
ment our retrieval strategy, and repeat this experiment
by changing query until each of the 1047 images has
been selected as query. Then we calculate the average
precision at each iteration. Among these 1047 queries,
the number of those leading to direct search within a
cluster is 174, 289 and 421, respectively correspond-
ing to 200, 300 and 500 experiences. If the percentage
of correct clustering is high, the retrieval with direct
search within a cluster yields a high precision after it-
eration 0, so it is not strange that with increased ex-
periences, the average retrieval precision is improved.
The more important aspect of direct search within one
cluster is that the computational time at iteration 1 is
decreased by 1/c compared with that of searching the
entire database. This has deep significance for retrieval
performance in practical applications.

Figure 9 shows two different retrievals with the same
query image which is regarded as containing the con-
cepts of both cloud and water based on the concept
learning after 500 experiences.

4. Conclusions

This paper proposes a promising approach for an
integrated content-based image retrieval system that
uses meta knowledge to improve future image re-
trieval performance. The visual concepts are contin-
ually learned and refined over time. With increased
retrieval experiences, concept learning by the modi-
fied semi-supervised fuzzy clustering method yields im-
proved concept distribution knowledge, which leads to
faster retrievals with higher precision. Implementing
experiments on larger real data set with more concepts
is our current work of interest. The dynamic concept
creation, splitting and merging are the topics of future
research.
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